Molecular Modeling of the Subtype Dopamine Receptor-ligand Interactions

Molecular Modeling of the Subtype Dopamine Receptor-ligand Interactions

썸네일 Challenge 애게서 업로드 하였습니다. 17. 8. 8 오전 9:58
평균 (0 투표)
Dopamine agonists and antagonists and its receptor play a critical role in the information transfer in the nervous system, and dopamine receptor-ligands interactions are deeply related to Parkinson’s disease, schizophrenia and some other mental diseases. However, the only experimental 3D structure available for dopamine receptors is human D3 dopamine receptor. Therefore, it is important to create model of subtype dopamine receptor-ligands interactions. We report here the 3D structures of the human D1 and D2 dopamine receptor predicted by using GalaxyTBM, and its predicted binding site determined by using GalaxyDock. The highly conserved Asp on TM 3 and Phe on TM 6 have critical role in ligand binding. Also, highly conserved serines on TM 5 are essential for binding agonists and some kinds of antagonists. We identify differences between binding sites of agonists and antagonists of human D1 and D2 dopamine receptor, and find the reasons of selective binding of antagonists.
경진대회: 계산화학 계산화학 » 2회 경진대회
태그: dock galaxydock galaxytbm
1 Of 12
코멘트
아직 코멘트가 없습니다. Please sign in to comment.

버전 1.0

Challenge가 마지막으로 수정함
17. 8. 8 오전 9:58
상태: 승인됨
Dopamine agonists and antagonists and its receptor play a critical role in the information transfer in the nervous system, and dopamine receptor-ligands interactions are deeply related to Parkinson’s disease, schizophrenia and some other mental diseases. However, the only experimental 3D structure available for dopamine receptors is human D3 dopamine receptor. Therefore, it is important to create model of subtype dopamine receptor-ligands interactions. We report here the 3D structures of the human D1 and D2 dopamine receptor predicted by using GalaxyTBM, and its predicted binding site determined by using GalaxyDock. The highly conserved Asp on TM 3 and Phe on TM 6 have critical role in ligand binding. Also, highly conserved serines on TM 5 are essential for binding agonists and some kinds of antagonists. We identify differences between binding sites of agonists and antagonists of human D1 and D2 dopamine receptor, and find the reasons of selective binding of antagonists.
다운로드 (1.7MB) URL 또는 Webdav URL 가져오기
버전 히스토리
버전 날짜 크기  
1.0 4 년 전 1.7MB